

Sustainable ROI of a 3D Printer

Lise Laurin, lise@earthshiftglobal.com Tom Etheridge, tom.etheridge@hp.com Nathan Ayer, nathan@earthshiftglobal.com

What is Sustainable Return on Investment (S-ROI)?

- Methodology developed out of Total Cost Assessment that assesses the return on investment of a decision or investment including externalities like environmental and social impacts.
- Clearly addresses the inherent uncertainty in all investments, including obvious uncertainties such as changing energy prices as well as more difficult uncertainties such as technical and social risks.
- Uses a multi-stakeholder approach to identify social risks and provide opportunities for optimization
- Originally developed by industry for industry—builds upon traditional return on investment cost accounting methodology by including uncertainty, social risk assessment, and monetization of intangibles
- Incorporates triple bottom line thinking into a single metric
- Encourages constructive dialog

Sustainability ROI Cost Types

5 Costs

1. Direct Costs

- 2. Indirect Costs
- **3. Future Contingent Liabilities**
- 4. Intangible Internal Costs
- 5. External costs

1. Direct Costs

Scrap disposal

Labor and operations

Capital equipment

Reporting

Overhead

Spill

Lawsuits, fines, penalties

Clean up costs

4. Intangible Internal Costs

Labor relations, morale issues, community relations

Customer relations

Brand value

5. External Costs

Effect on housing prices

Habitat restoration

Effect of pollution on human health

Loss of habitat

S-ROI: How Do You Do it (full study)?

S-ROI: How Do You Do it (screening study)?

Why Does it Work?

∕ed

- Uses traditional cost accounting methodologies
- Leverages Bayesian uncertainty principles
- Allows the organization and the stakeholders to weigh the impacts (social, environmental and economic) using their own value system.
- Creates a picture of the future including best case, worst case, and most probable cases

3D Printer Screening S-ROI Goal and Scope

- The goal of this study is to provide HP with some ideas of the social impacts of 3D printing of plastic parts and how those compare with the cost of a printer.
- The goal is not to provide an exhaustive study.
- The scope is global and looks into the near future.
- Social impacts are generic to 3D printing and not specific to HP's printer

Assumptions

- Assess the life of one 3D printer (5 years)
- Use "average" data from the screening LCA to estimate number of parts and their impacts.
- Assume 3D printing will replace processing (Injection molding) with approximately the same cost and environmental impact; i.e., volumes are low and not significantly different between the technologies

Proposed Scenarios

- Amputees have a better quality of life due to the availability of custom prostheses
- Better surgeries are done using 3D models to train
- Products last longer
- Parts are lightweighted
- More widgets are produced because they are easy to produce and customize
- Fewer widgets are produced because products are "right"
- Risk of design piracy
- Opportunity for subsistence farmers to become inventors and manufacturers
- Sculpture becomes more affordable

Amputees Have a Better Quality of Life

- 1.9 million amputees in the US
- 10 million amputees in the world
- Prosthetics need to be replaced every 6-12 months for children, every 3-5 years for adults
- Percent of arm amputees: 30%
- WHO value of:
 - Amputation of one arm without treatment: 0.079-0.167 DALYs/year
 - Amputation of one arm with treatment: 0.024-0.059 DALYs/year
 - Amputation of one leg without treatment: 0.118-0.240 DALYs/year
 - Amputation of one leg with treatment: 0.023-0.176 DALYs/year

Prosthetic Assumptions

- Assume all amputees are either one arm or one leg
- Assume benefit moves the amputee from "without" to "with" treatment
- Assume benefit of one prosthesis per printer per year
- Assume benefit of a DALY is between 1-3 times per capita GDP (WHO)
- Assume Global GDP

Design Piracy

- 0-1% chance of property infringement per printer
- Use existing penalties of piracy
- Use a range from 0 to full penalty
- Consider a scenario where standards are developed
 - 0-1% reduced risk of property infringement per printer

Results by Scenario

Impacts of 3D printer by scenario NPV over the life of the printer

Combined impacts of a 3D Printer NPV over the lifetime of one printer

Takeaways for Users of 3D Printers

- Design piracy is a big risk . . . Standards may alleviate the risk
- The ability to make obsolete parts is a boon to both the environment and our pocketbooks

References

- Number of amputees in the US: 1.9 million https://www.nist.gov/sites/default/files/documents/tip/wp/pswp/239_limb_prosthetics_services_devices.pdf
- Number of amputees in the World: 10 million; Percent of arm amputees: 30% https://web.stanford.edu/class/engr110/2011/LeBlanc-03a.pdf
- World per capita GDP 2015: \$10,005 <u>http://data.worldbank.org/indicator/NY.GDP.PCAP.CD</u>
- US per capita GDP 2015 \$55,837 <u>http://data.worldbank.org/indicator/NY.GDP.PCAP.CD</u>
- Number of heart surgeries in the US 500k <u>http://www.texasheart.org/HIC/Topics/Proced/</u>
- Heart surgery failure rate: 4.9% for pediatric at one hospital http://www.chop.edu/pages/open-heartcardiopulmonary-bypass-cases-and-outcomes; 2-5% for bypass surgery http://www.chop.edu/pages/open-heartcardiopulmonary-bypass-cases-and-outcomes; 2-5% for bypass surgery http://www.healthcentral.com/heart-diseaase/patient-guide-44625-6_3.html
- GHG society min:\$ 0.018 /kg CO2-eq http://www.sciencedirect.com/science/article/pii/S0140988306000090
- GHG society max: \$0.15/kg CO2-eq http://www.ecocostsvalue.com/EVR/model/theory/subject/2-eco-costs.html
- Value of a patent lawsuit (median \$2.3 million) https://www.bjs.gov/content/pub/pdf/ipt02.pdf
- Between 700000 and 900000 small arms produced annually
 <u>https://www.amnesty.org/en/latest/news/2015/08/killer-facts-the-scale-of-the-global-arms-trade/</u>
- 437000 murdered in 2012, 50% under 30 <u>https://www.unodc.org/unodc/en/press/releases/2014/April/some-437000-people-murdered-worldwide-in-2012-according-to-new-unodc-study.html</u>
- Life expectancy: 71 https://en.wikipedia.org/wiki/List_of_countries_by_life_expectancy
- Minimum wage in Guatemala: 26742 quetzales/year= \$3,429 US, Average wage: \$6634 https://www.numbeo.com/cost-of-living/country_result.jsp?country=Guatemala
- Difference in lifespan vs income for Americans https://www.brookings.edu/wp-content/uploads/2016/06/differential_mortality_retirement_benefits_bosworth_version_2.pdf
- Difference in lifespan vs education for Guatemalans: Approximately 5 years for above change, based on change in Gross national income; as much as 13 years in Guatemala, simply for the change from indigenous to non-indigenous people. http://www.thelancet.com/pdfs/journals/lancet/PIIS0140-6736(08)61405-1.pdf

Prosthetic Assumptions

- Assume all amputees are either one arm or one leg
- Assume benefit moves the amputee from "without" to "with" treatment
- Assume benefit of one prosthesis per printer per year
- Assume benefit of a DALY is between 1-3 times per capita GDP (WHO)
- Assume Global GDP

Better Surgery

- 500,000 heart surgeries annually in US
- Risk of failure 2-5%
- WHO value of Heart failure
 - Mild 0.041 (0.026-0.062) DALYs
 - Moderate 0.072 (0.047-0.103) DALYs
 - Severe 0.179 (0.122-0.251) DALYs

Surgery Model Assumptions

- Each printer prints one heart model per year
- Model moves risk of failure from high (5%) to low (2%)
- Failure is equal to severe heart failure (in comparison with mild heart failure)
- Use WHO 1-3 x per capita GDP for US

Longer lifespan products

- Use assumptions and values in Screening LCA
- Assume 10-30% of products printed fit this model
- Use WHO 1-3 x per capita GDP/DALY (global)
- Use literature ranges for climate change, ecosystem quality, and water scarcity
- Use ReCiPe values for Resources

Parts are Lightweighted

- 10-20% of parts are made lighter than with traditional manufacturing
- 1-5% of parts improve efficiency
- Use Screening LCA results for environmental impacts

Change in Number of Widgets Produced

- Explore environmental impacts of 20% of widgets printed would not have been otherwise
- Explore environmental impacts of 20% fewer widgets produced

Farmers Become Inventors

- 1 farmer per printer
- Assume farmer is in Guatemala (data in hand from workshop in Guatemala)
- Wages go from minimum to average
- Kids get a better education
 - Project better wages based on literature (doesn't show up due to time horizon)
- Family has longer life expectancy (5-13 years)
 - Use literature for estimates and WHO value (impacts brought to today)

More Affordable Sculpture

- Print 1 sculpture/year
- Sculpture increases happiness
- Happiness reduces stress
- Reduced stress means we sleep better
- 1 sculpture = 1-5 more nights without insomnia per year

